Knot Groups and Colorability

Ana Wright

February 2, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

"Knots are determined by their complement"

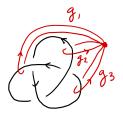
Gordon-Luecke Theorem: If two knots have complements that are orientation-preserving homeomorphic then they are isotopic.

(日) (日) (日) (日) (日) (日) (日)

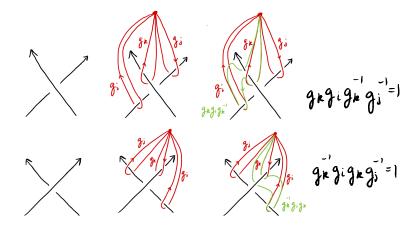
Example: Unknot

 $\langle g|
angle\cong\mathbb{Z}$

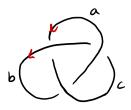
Example: Trefoil



Relators in the Wirtinger presentation



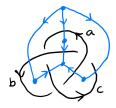
Example: Trefoil



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\langle a, b, c | a^{-1} cab^{-1}, b^{-1} abc^{-1}, c^{-1} bca^{-1} \rangle$

Example: Trefoil



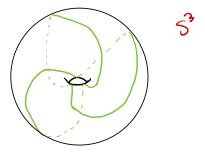
$$\langle a, b, c | a^{-1} cab^{-1}, b^{-1} abc^{-1}, c^{-1} bca^{-1} \rangle$$

 $cab^{-1}a^{-1} \cdot abc^{-1}b^{-1} = cab^{-1}bc^{-1}b^{-1} = cac^{-1}b^{-1}$
 $ac^{-1}b^{-1}c = (c^{-1}bca^{-1})^{-1}$
so $c^{-1}bca^{-1} \in \langle a^{-1}cab^{-1}, b^{-1}abc^{-1} \rangle^{N}$.

Other Route to a Presentation

Example: Trefoil

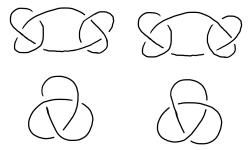
Wirtinger presentation: $\langle a, b, c | a^{-1}cab^{-1}, b^{-1}abc^{-1} \rangle$ Using Seifert-Van Kampen: $\langle x, y | x^2 = y^3 \rangle$



(日) (日) (日) (日) (日) (日) (日)

Knot Group as a Knot Invariant

There exist distinct knots with the same knot group.



Theorem (Whitten): Prime knots in S^3 with isomorphic groups have homeomorphic complements.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Tricolorability

Let D be a knot diagram of the knot K. A knot is **tricolorable** if each of the strands in D can be assigned a color from a set of three colors such that

- every crossing of *D* uses either all one color or all distinct colors
- more than one color is used

Nonexample: Unknot Example: Trefoil

Tricolorability is a Well-Defined Invariant

Reidemeister Moves: R1 R2 R3 *~*) *es*

・ロト・西ト・西ト・西ト・日 のくの

3-colorability

Equivalent definition to tricolorability: Let *D* be a knot diagram of the knot *K*. Label the strands of *D* $a_1, ..., a_m$. A knot is **3-colorable** if there exists a map $f : \{a_1, ..., a_m\} \to \mathbb{Z}/3\mathbb{Z}$ such that

- for all crossings in *D* we have $f(a_i) + f(a_j) \equiv 2f(a_k) \mod 3$ where a_i and a_j are the understrands and a_k is the overstrand
- $|f\{a_1, ..., a_m\}| > 1$

a+a=2a

2+1=0 mod 3

1+0=7.2 mod 3

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Example: Trefoil

n-colorability

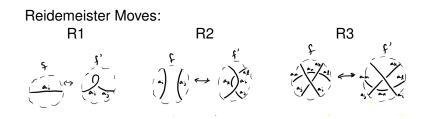
Let *D* be a knot diagram of the knot *K*. Label the strands of *D* $a_1, ..., a_m$. A knot is *n*-colorable if there exists a map $f : \{a_1, ..., a_m\} \rightarrow \mathbb{Z}/n\mathbb{Z}$ such that

• for all crossings in *D* we have $f(a_i) + f(a_j) \equiv 2f(a_k) \mod n$ where a_i and a_j are the understrands and a_k is the overstrand

(日) (日) (日) (日) (日) (日) (日)

• $|f\{a_1, ..., a_m\}| > 1$

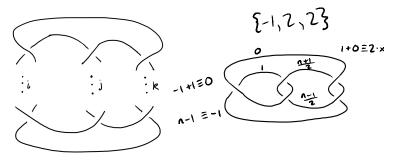
n-colorability is a Well-Defined Invariant



・ コット (雪) (小田) (コット 日)

Examples of *n*-colorable Knots

Coloring pretzel knots



(日) (日) (日) (日) (日) (日) (日)

Theorem (Butler, Cohen, Dalton, Louder, Rettberg, Whitt) The $\{-i, 2i, 2i\}$ pretzel knot is *n*-colorable for all *n*.

Knot Group and *n*-colorability- Notation

Let *D* be an oriented diagram of a knot *K*. Let $Q = \{a_1, ..., a_m\}$ be the strands of *D* and let $T \subset Q^3$ be the set of triples (a, b, c) corresponding to the crossings of *D* such that *a* is the overstrand, *b* is the incoming understrand, and *c* is the outgoing understrand. Then the Wirtinger presentation of the knot group of *K* from *D* is

$$\pi_1(S^3 \setminus K) = \langle Q | \{ a^{-1} bac^{-1} | (a, b, c) \in T \} \rangle.$$

The dihedral group of order 2*n* has presentation

Theorem (Fox, Butler, Cohen, Dalton, Louder, Rettberg, Whitt) The diagram *D* is *n*-colorable if and only if there exists a homomorphism $\phi : \pi_1(S^3 \setminus K) \to \mathbb{D}_n$ such that $\phi(a_i) = yx^{k(a_i)}$ where $k : Q \to \mathbb{Z}/n\mathbb{Z}$.

(日) (日) (日) (日) (日) (日) (日)

$$Q: \langle Q | \{ a \ b a c \ | (a, b, c) \in T \} \rangle \longrightarrow D_n$$

Proof

For reference: $\mathbb{D}_n = \langle x, y | x^n = 1, y^2 = 1, yxy = x^{-1} \rangle$. (⇒) Assume that there exists an *n*-coloring $k : Q \to \mathbb{Z}/n\mathbb{Z}$ of *D*. (a,b,c)ET $2k(a) \equiv k(b) + k(c) \mod n$ $\mathbf{y}^{k}(b)-2k(a) - \mathbf{y}^{-k}(c)$ $x^{k(b)-k(a)}vx^{k(a)}v = vx^{k(c)}v$ $x^{k(b)-k(a)}vx^{k(a)} = vx^{k(c)}$ $x^{-k(a)}v^2x^{k(b)}vx^{k(a)} = vx^{k(c)}$ $(vx^{k(a)})^{-1}vx^{k(b)}vx^{k(a)} = vx^{k(c)}$ $\phi(a^{-1}ba) = \phi(c)$

So ϕ is a group homomorphism.

Group Theory and Knot Theory

"Given a class of groups G, with which knots, if any, does there exist a homomorphism from the knot group to a group in G?"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reference

Explorations into Knot Theory: Colorability by Butler, Cohen, Dalton, Louder, Rettberg, and Whitt.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □